

Date: 13.11.2022

ARJUNA BATCH

MATHEMATICS : REVISION TEST 2 (SET A)

Topics: Complex Number, Permutation and Combination and Probability

1. For k = 1, 2, 3 the box B_k contains k red balls and (k + 1) white balls. Let $P(B_1) = \frac{1}{2}$, $P(B_2) = \frac{1}{3}$, $P(B_3) = \frac{1}{6}$. A box is selected at random and a ball is drawn from it. If a red ball is drawn then the probability that it had come from box B_2 is

(a)
$$\frac{35}{78}$$
 (b) $\frac{14}{39}$ (c) $\frac{10}{13}$ (d) $\frac{12}{13}$

- 2. The probability that A can solve a problem is 2/3 and B can solve is 3/4. If both of them attempt the problem, what is the probability that the problem get solved
 - (a) 11/12 (b) 7/12 (c) 5/12 (d) 9/12
- 3. If |z-1| < 2 |z-2| then the locus of z = x + iy is
 - (a) $x^2 + y^2 + 3x 2 = 0$ (b) $3x^2 + 3y^2 14x + 15 > 0$
 - (c) $3x^2 + 3y^2 14x + 15 < 0$ (d) $3x^2 + 3y^2 14x + 15 = 0$
- 4. If a random variable X follows B.D. with mean 2.4 and variance 1.44, the number of independent trials n is
 - (a) 10 (b) 8 (c) 6 (d) 2
- 5. The number of ways can a collection of 30 books be divided into two groups of 10 and 20 so that the first group always contains a particular book is
 - (a) ${}^{29}C_{29}$ (b) ${}^{29}C_{20}$ (c) ${}^{29}C_{10}$ (d) ${}^{29}C_9 \times {}^{29}C_{20}$

- 6. The number of 6 digit numbers which contains only odd digits and all the odd digits must appear is
 - (a) $\frac{5}{2} \angle 6$ (b) $\angle 6$ (c) $\frac{1}{2} \angle 6$ (d) $\frac{5}{2} \angle 5$
- 7. The value of $\sqrt{15 + 8i} + \sqrt{15 8i}$ is equal to
 - (a) 15 (b) 8 (c) 23 (d) 7
- 8. The number of arrangements of the letters of the word BANANA in which N's do not appear adjacently is
 - (a) 40 (b) 60 (c) 80 (d) 100

9. If the events A and B are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$ and $P(B) = \frac{1-x}{4}$, then the set of possible values of x lies in the interval:

- (a) [0,1] (b) $\left[\frac{1}{3},\frac{2}{3}\right]$ (c) $\left[-\frac{1}{3},\frac{5}{9}\right]$ (d) $\left[-\frac{7}{9},\frac{4}{9}\right]$
- 10. Let A, B, C be three mutually independent events.
 Statement-I: A and B ∪ C are independent.
 Statement-II: A and B ∩ C are independent.

Select the correct answer.

- (a) Statement-I statement is true, Statement-II is a correct explanation for statement-I
- (b) Statement-I is true, Statement-II is true, Statement-II is not correct explanation for statement-I
- (c) Statement-I is true; Statement-II is false
- (d) Statement-I is false, Statement-II is true
- 11. If α and β are two different complex numbers with $|\beta| = 1$, then $\left|\frac{\beta \alpha}{1 \overline{\alpha}\beta}\right|$ is equal to

(a) $\frac{1}{2}$ (b) 0 (c) -1 (d) 1

- Learning with the Speed of Mumbai and the Tradition of Kota
- 12. I : If a and b are positive real numbers then $\sqrt{-a} \times \sqrt{-b} = \sqrt{ab}$

II: The Arg
$$\left[\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right]$$
 is 120°

Which of the statements are true.

- (a) Only II (b) Only II (c) Both I and II (d) Neither I nor II
- 13. Four digit numbers formed with 1, 2, 4, 6, 8 without repetition are formed in ascending order. Then the rank of 4618 is
 - (a) 31 (b) 62 (c) 124 (d) 248
- 14. A box contain 10 mangoes out of which 4 are rotten. Two mangoes are taken together. If one of them is found to be good, the probability that the other is rotten is
 - (a) $\frac{5}{13}$ (b) $\frac{7}{13}$ (c) $\frac{8}{13}$ (d) $\frac{9}{13}$
- 15. The number of onto functions that can be defined from $A = \{a, b, c, d, e\}$ to $\{1, 2\}$ is
 - (a) 30 (b) 0 (c) 60 (d) 32

16. Three dice are rolled. If no two dice shows the same face, the probability that one is an ace

- (a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{8}$
- 17. If 4 dice are rolled, the number of ways of getting the sum "10" is
 - (a) 56.0 (b) 64.0 (c) 72.0 (d) 80.0
- 18. A tosses 2 coines while B tosses 3. The probability that B obtains more number of heads is
 - (a) $\frac{1}{4}$ (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 19. If z is a complex number satisfying the relation |z + 1| = z + 2(1 + i) then z is

- Learning with the Speed of Mumbai and the Tradition of Kota
 - (a) $\frac{1}{2}(1+4i)$ (b) $\frac{1}{2}(3+4i)$ (c) $\frac{1}{2}(3-4i)$ (d) $\frac{1}{2}(1-4i)$

20. A box X contains 2 white and 3 black balls and another bag Y contains 4 while and 2 black balls. One bag is selected at random and a ball is drawn from it. Then the probability for the ball chosen be white is

- (a) $\frac{2}{15}$ (b) $\frac{7}{15}$ (c) $\frac{8}{15}$ (d) $\frac{14}{15}$
- 21. Five coins whose faces are marked 2 and 3 are thrown. The chance of obtaining a total is 12 is

(a)
$$\frac{11}{16}$$
 (b) $\frac{15}{16}$ (c) $\frac{5}{16}$ (d) $\frac{1}{16}$

- 22. The additive inverse of (1 + 2i)(3 4i) is
 - (a) 11+2i (b) 11-2i (c) -11+2i (d) -11-2i
- 23. A speaks truth in 4 out of 5 times. A die is tossed. If A reports that there is 4 on the die, then the probability that there was 4 on the die, is
 - (a) $\frac{2}{3}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) $\frac{2}{9}$

24. A and B play a game in which A's chance of winning is $\frac{1}{5}$. In a series of 6 games, the probability that A will win all the 6 games is

(a)
$${}^{6}C_{2}\left(\frac{1}{5}\right)^{6}$$
 (b) ${}^{6}C_{6}\left(\frac{1}{5}\right)^{6}\left(\frac{4}{5}\right)^{0}$ (c) $\left(\frac{4}{5}\right)^{6}$ (d) ${}^{6}C_{5}\left(\frac{1}{5}\right)^{6}$

25. If the range of random variable X = {0, 1, 2,} and P(X = k) = $\frac{c(k+1)}{2^k}$ for k = 0, 1, 2, ... then c =

(a) $\frac{1}{2}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (d) $\frac{1}{5}$

26. If ${}^{n}P_{4} = 30240$, ${}^{n}C_{r} = 252$ then the ordered pair (n, r) =

- Learning with the Speed of Mumbai and the Tradition of Kota
 - (a) (12, 6) (b) (10, 5) (c) (9, 4) (d) (16, 7)
- 27. Let $S = \{1, 2, ..., 20\}$. A subset B of S is said to be "nice", if the sum of the elements of B is 203. Then the probability that a randomly chosen subset of S is "nice" is

(a)
$$\frac{6}{20^{20}}$$
 (b) $\frac{5}{2^{20}}$ (c) $\frac{4}{2^{20}}$ (d) $\frac{7}{2^{20}}$

28. The sum of two natural numbers is 20. Find the chance that their product less than 50 is

(a)
$$\frac{4}{19}$$
 (b) $\frac{3}{19}$ (c) $\frac{2}{19}$ (d) $\frac{1}{19}$

29. The conjugate of (1 + 2i)(2 - 3i) is

(a)
$$-4+i$$
 (b) $-4-i$ (c) $(8+i)$ (d) $(8-i)$

- 30. If a, b and c are the greatest value of ${}^{19}C_p$, ${}^{20}C_q$ and ${}^{21}C_r$ respectively then
 - (a) $\frac{a}{11} = \frac{b}{22} = \frac{c}{42}$ (b) $\frac{a}{22} = \frac{b}{11} = \frac{c}{42}$ (c) $\frac{a}{22} = \frac{b}{42} = \frac{c}{11}$ (d) $\frac{a}{21} = \frac{b}{11} = \frac{c}{22}$
- 31. If α and β are real then $\left|\frac{\alpha + i\beta}{\beta i\alpha}\right| =$

(a)	Lies between 0 and 1	(b)	1
(c)	>1	(d)	0

- 32. A dice is thrown 2n + 1 times, $n \in N$. The probability that faces with even numbers show up odd number of times is
 - (a) $\frac{2n+1}{4n+3}$ (b) less than $\frac{1}{2}$ (c) greater than $\frac{1}{2}$ (d) Equals to $\frac{1}{2}$

Learning with the Speed of Mumbai and the Tradition of Kota

33. The value of
$$\begin{bmatrix} 1 + \cos \frac{\pi}{8} + i \sin \frac{\pi}{8} \\ 1 + \cos \frac{\pi}{8} - i \sin \frac{\pi}{8} \end{bmatrix}^{8}$$
(a) $1 + i$ (b) $1 - i$ (c) 1 (d) -1
34. If a polygon of n sides has 54 diagonals, then n is equal to
(a) 12 (b) 11 (c) 13 (d) 14
35. A husband and wife appear in an interview for two vacancies in the same post. The probability of husbands selection is $\frac{1}{7}$ and that of wife is $\frac{1}{5}$. The probability that both of them will be selected is
(a) $\frac{24}{35}$ (b) $\frac{2}{7}$ (c) $\frac{1}{35}$ (d) $\frac{2}{35}$
36. If $x = -5 + 4i$ then $x^4 + 9x^3 + 35x^2 - x + 4 =$
(a) 170 (b) 160 (c) -170 (d) -160
37. The number of natural numbers less than 7,000 which can be formed by using the digits 0, 1, 3, 7, 9 (repetition of digits allowed) is equal to
(a) 375 (b) 275 (c) 274 (d) 374
38. A random variable x has the following probability distribution:

$$\frac{X}{P(X)} \frac{1}{2k} \frac{1}{2k} \frac{2}{3k} \frac{4}{3k} \frac{5}{k^2} \frac{6}{2k^2} \frac{7}{7k^2 + k}$$
Determine P(X > 6)
(a) $\frac{14}{100}$ (b) $\frac{15}{100}$ (c) $\frac{16}{100}$ (d) $\frac{17}{100}$
39. A number n is choosen at random from $S = \{1, 2, 3, ..., 50\}$. Let

Learning with the Speed of Mumbai and the Tradition of Kota

40.

41.

42.

43.

	$\mathbf{A} = \left\{ \mathbf{n} \right.$	$n \in S: n + \frac{50}{n} > 27$	7 }						
	$B = \{ n \in S : n \text{ is a prime} \} \text{ and}$								
	C = { n	$\in S$: n is a square	}						
,	The cor	rect order of their j	probabili	ities is					
	(a)	P(A) < P(B) < P(C)	C)		(b)	P(A) > P(B) > P(C)			
	(c)	P(B) < P(A) < P(C)	C)		(d)	P(A) > P(C) > P(B)			
	If z is p	urely imaginary an	d Im(z)	> 0, then amp(z) =					
	(a)	π	(b)	$\frac{\pi}{2}$	(c)	0	(d)	$-\frac{\pi}{2}$	
	If $a = \operatorname{cis} \alpha$, $b = \operatorname{cis} \beta$, $c = \operatorname{cis} \gamma$ and $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$ then $\cos(\alpha + \beta) + \cos(\beta - \gamma) + \cos(\gamma - \alpha) = 1$							$(\gamma - \alpha) =$	
	(a)	0	(b)	1	(c)	-1	(d)	2	
	If $z_1 = c$	$\cos \theta_1 + i \sin \theta_1, z_1$	$_2 = \cos \theta$	$\theta_2 + i \sin \theta_2$ then $z_1 z_2$	₂ is				
	(a) $\cos(\theta_1, \theta_2) + i \sin(\theta_1, \theta_2)$				(b)	$\cos(\theta_1 - \theta_2) - i\sin(\theta_1 - \theta_2)$			
	(c) $\cos(\theta_1 \cdot \theta_2) - i\sin(\theta_1 \cdot \theta_2)$				(d)	$\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)$			
	The number of ways in which 6 things can be divided								
	Statement I: into 2 equal groups is 10								
	Statement II: among 2 persons equally is 20.								
	Which of the above statements is true.								
	(a)	Only I is true			(b)	Only II is true			
	(c)	Both I and II are the	rue		(d)	Neither I nor II true			

- 44. There are 10 true-false questions in an examination. The number of ways in which these questions can be answered is
 - (a) 240 (b) 20 (c) 1024 (d) 100
- 45. An urn contains 5 red and 2 green balls. A ball is drawn at random from the urm. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is drawn at random from it. The probability that the second ball is red, is
 - (a) $\frac{32}{49}$ (b) $\frac{17}{49}$ (c) $\frac{15}{49}$ (d) $\frac{36}{49}$
- 46. Assuming the balls to the identical except for difference in colours, the number of ways in which one or more balls can be selected from 10 white, 9 green and 7 black balls is
 - (a) 880 (b) 629 (c) 630 (d) 879
- 47. If arg $z = \pi / 4$ then
 - (a) Re $z^2 = 1 mz^2$ (b) I $mz^2 = 0$ (c) Re $z^2 = 0$ (d) Re z = 0
- 48. Six persons A, B, C, D, E and F are to be seated at a circular table facing towards the centre. Then the number of ways that can be done if A must have either E or F on his immediate right and E must have either F or D on his immediate right, is
 - (a) 18 (b) 30 (c) 12 (d) 24

49. Number of different matrices that can be formed with elements 0, 1, 2 or 3 each matrix having 4 elements is

(a)
$$3 \times 2^4$$
 (b) 2×4^4 (c) 3×4^4 (d) 2^4
50. If $P(B) = \frac{3}{5}$, $P(A|B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then $P(A \cup B)' + P(A' \cup B) =$
(a) $\frac{1}{5}$ (b) $\frac{4}{5}$ (c) $\frac{1}{2}$ (d) 1

Max. Marks: 100

ARJUNA BATCH

MATHEMATICS : REVISION TEST 2 (SET A)

Topics: Complex Number, Permutation and Combination and Probability

					-				
1.	(b)	2.	(a)	3.	(b)	4.	(c)	5.	(b)
6.	(a)	7.	(b)	8.	(a)	9.	(c)	10.	(b)
11.	(d)	12.	(b)	13.	(b)	14.	(c)	15.	(a)
16.	(c)	17.	(d)	18.	(c)	19.	(d)	20.	(c)
21.	(c)	22.	(d)	23.	(b)	24.	(b)	25.	(c)
26.	(b)	27.	(b)	28.	(a)	29.	(d)	30.	(a)
31.	(b)	32.	(d)	33.	(d)	34.	(a)	35.	(c)
36.	(d)	37.	(d)	38.	(d)	39.	(b)	40.	(b)
41.	(b)	42.	(d)	43.	(c)	44.	(c)	45.	(a)
46.	(d)	47.	(c)	48.	(a)	49.	(c)	50.	(d)

Answer Key